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Cross-Product Cubature Error Bounds 

By Frank G. Lether 

Abstract. This paper is concerned with cross-product cubature rules. We use Sard's 
Kernel Theorem [10] to express the cross-product cubature error in terms of one variable 
kernels. This simplified representation of the error is then used to derive cubature error 
bounds analogous to those obtained by Secrest and Stroud [13], for quadrature rules. 

1. Introduction. The problem of finding error bounds for numerical integration 
rules in two or more dimensions has, until recently, received little attention. The 
purpose of this paper is to apply a kernel theorem due to Sard [10] to derive error 
bounds for cross-product cubature rules. Numerical examples, which illustrate the 
theory, are included. 

The cubature error bounds which occur in the literature are of two types: deriva- 
tive and derivative-free. The derivative-free error bounds are obtained by complex- 
variable arguments and assume the integrand is analytic in a suitable region. We 
mention the work of Ahlin [1], Chawla [3] and Stenger [12] for Gaussian cross- 
product rules. Barnhill [2] has generalized some of Davis's [4] one-dimensional 
work to cubature rules. The derivative cubature error bounds give the error in terms 
of certain partial derivatives of the function to be integrated. Derivative error repre- 
sentations for cross-product rules have been obtained by several authors [6], [8], 
and [11]. 

In [13], Stroud and Secrest obtain quadrature error bounds by using Peano's 
Theorem [5, p. 70]. Their bounds are written as a product of the L1 norm of the Peano 
kernel and a bound on the derivative of the function to be integrated. It is shown in 
[13] how error bounds for cross-product rules can be obtained from quadrature 
error bounds by using a method due to Nikol'skii [9]. Sard [10] has generalized 
Peano's Theorem to the multivariable case. By using Sard's Kernel Theorem [10, 
p. 200], error bounds analogous to those in [13] can be derived for cubature rules. 

In this paper we consider cross-product cubature error bounds. Our basic tool is 
Sard's Kernel Theorem. We show for cross-product rules that all of the kernels in 
Sard's error representation are completely determined by the Peano kernels for the 
quadrature rules which generate the cross-product rule. The Sard kernels for Gaussian 
rules are shown to have special sign properties which facilitate the calculation of 
their norms. The error bounds we derive for cross-product rules will be extended to 
fully symmetric cubature rules in a future paper. 

2. The Cubature Error Representation. Let the two quadrature rules 
b m 

(2.1) I u(x)r(x) dx = E A,r(a,,) + R(r) 
a ,ul~~jh 
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and 
dn 

(2.2) f v(y)s(y) dy = ? B^s(b,) + S(s) 

have algebraic precision p and q, respectively. Let the nodes and weight functions 
satisfy the folowing properties: 

(i) a, E [a, b], 1 < , < m and f; u(x) dx 5 0, 
(ii) b, e [c, d], 1 < v < n and fd v(y) dy 5 0. 
We wish to study the cubature error R X S(f) in the cross-product rule generated 

by (2.1) and (2.2): 
d b fl m 

(2.3) R X S(f) = J J u(x)v(y)f(x, y) dx dy- E 7 A,,B4f(a,,, br). 
Vc1 a= 1 

Let a e [a, b], j C [c, d], I = [a, b] X [c, d] and let p and a be integers such that 
1 < p < p + 1, 1 < a < q + 1. Denote by Cp,,(I) the space of all real-valued func- 
tions f for which the partial derivatives 

ax' ayi 
are continuous on 1. Define the functions 0 and i6 as follows: 

O(t, x) = , x < x, 

=1, ? > x, 

and 6Q X, x) = 0(T, )-B(x, x), where t is a real number. Let 

(x - (i = (x - i/j!, i = 1, 2, 

-1, j=0. 

We work in the space Cp,,(I). Since Cp,q(I) = Brp,,,- [10, p. 184, Table 2, p. 207], 
it follows from Sard's Kernel Theorem 84 [10, p. 200] that 

b 

R X S() = Cf C "f, (a, j) + fA fb a(x, )Kp" (x) dx 
(2.4) i<P; jCr i< a 

,d od ,b 

+ fi,r(a, y)K"'(y) dy + f fpa(x, y)K"'(x, y) dx dy, 
i<p cc a 

where 

C"' = R X S[(x - a)(i(y- i)] < j < ,j , 

(2.5) KP"(9) = R X S[(x - ')(P-1)(a, x, x)(y - 0)(i)], < O., 

K- (g) = R X S[(x - a)(')(y - 4)(i3 y, y)], i < P, 

KP'7(, y) = R X S[(x - i)(P-')Vt(a, x, x)(y - g)(?l)(j, y, y)]. 

We now show that it is possible to write all of the kernels KP"", K' ' and Kp 'f in 
terms of the two kernels K"'? and K?'. 

Let Pk denote the class of all polynomials of degree less than or equal to k. The 
following two lemmas are a direct consequence of (2.3). 
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LEMMA 1. If r & P,, then 

rb 

R X S[r(x)s(y)] = S[s(y)] f u(x)r(x) dx. 

LEMMA 2. If s C P,, then 

d 

R X S[r(x)s(y)] = R[r(x)] f v(y)s(y) dy. 

THEOREM 1. If f&- Cp,,(I), then 

b d 

R X S(f) = f fp, i(x, 3) K"(x) dx + E f fi,(a, y)K '(y) dy 
(2.4') ? a i<p c 

rd rb 

+ f f fp,a(x, y)Kp C(x, y) dx dy, 

where 
d 

Kp'?(i) = -R[(x - t)'P-' 0(t, x)] fv(y) dy, 

K" -0(.) d~ 
Kp (-) = d v(y)(y- /3) dy, 1 j < < 

v(y) dy 

K0'"() = dual of Kp'0(?), 

(2.5') Kt'C(y) = dual of Kp'(i), 1 < i < p, 

K' (X, g) - K 
-() F -0(2, a) 

f u(x) dx 

+ K0'''0 (V ,) - 
K 

-- rd s 

f v(y) dy Ju (x) dGx v(y) dy 

and 

Fp'0(?, a) = 0(i, a) u(x)(x - -P)'p dx u(x)(x-- t)P-" dx, 

Ja a()x-~(l x 
G?0 -(7, B) = duaI of FP'?(x, ae). 

Proof. Since i < p < p + 1, Lemma I and (2.5) give 

C = O, i < p, j < T. 

We now calculate KP ". By (2.5) and Lemma 2, 

(2.6) KP;(X) = R[(x - t)(p-''1t(a, i, x)] fv(y)(y- )(3) dy. 
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The definition of +V implies 

(2.7) R[(x - )(P-l) (a, I, x)] -R[(x - t)(P-)0(, x)]. 

If we set j = 0 in (2.6) we obtain 
d 

KP ?(i) = R[(x -)(Pl)4,(a, ?, x)] fv(y) dy. 

The previous relation and (2.7) imply 

(2.8) V- (x) = -R[(x -)(P-l)OGx, x)] fv(y) dy. 

Relations (2.7) and (2.8) can be used to write (2.6) in the form 

K '0' (1) pd 
K'O(x-) d v(y)(y- )(i) dy, < j < a. 

fd v(y) dy 

An analogous argument establishes a dual relation between Ki.U and K"', 1 < i< p. 
The calculation of K"'? is more complicated. If we apply Lemmas 1 and 2 to (2.5) 

and use the definition of 4t we obtain 

Kp'?(?, g) = R X S[(x - i)(P-1)0(i, x)(y - V)(o-1)0(gV y)] 

Id 

(299) - 0(g, f)R[(x - )(P-1)0(?, x)] v(y)(y - v)(?1 dy 

- O(m, a)S[(y - v)(0-) 0(g, y)] J u(x)(x - 1)(P1) dx. 

We now simplify (2.9). 

R X S[(x - )(P-1) 0(?, x)(y - v)('-1) 0(, y)] 

(2.10) = u(x)(x - i)(P-l) dx fv(y)(y - v)(f-1) dy 

- - A,,(a,,-)(P-1)0(1, a,,) B D,(b, - V)(-')O(g, b,). 
Jh1 v1 

From (2.8) and (2.1) we have 

(2.11) X A,,(a,, - ?)(P1) O(1, a,,) = f u(x)(x - ?)(1) dx + v(y) d 

A similar argument shows 

(2.12) (, v(y)(y dy + 

fu(x) dx 
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Using (2.11) and (2.12), we can write (2.10) in the form 

R X S[(x - 1)(P1")0(1, x)(y - V)(Ul)O(g, y)] 

K='-(d 
) 

fv(y)(yC - b)(d u(x)(x - ) dx 
( v(y) dy f u(x) dx 

(2.13) ca 

rb rd 

L u(x) dx f v(y) dy 

Substitution of (2.13), (2.8) and the dual of (2.8) into (2.9) yields the form for Kp ' 
given in (2.5'). Q.E.D. 

There is a natural relationship between the two basic Sard kernels KP ? and K0 
for R X S and the Peano kernels Kp-, o and Ko, 0, for R and S. These properties 
are summarized in Corollary 1. 

COROLLARY 1. If r ? Cp[a, b], then 

R(r) 
- L (x) KP-.1.0(x) dx, 

where the Peano kernel Kp_ 1, 0 for R satisfies 

Kp-,O(x) = KP'o(x)/ v(y) dy. 

A dual relationship exists between the Peano kernel Ko, , for S, and K?' 
Proof. By Peano's Theorem [5, p. 70] 

R(r) f dxp K-_.io(x) dx, 

where 
Bp_-,O(X) = -R[(x -)(P-1) 0(t, x)]. 

The proof follows from the previous equation and the form given for K ? in (2.5'). 
An analogous argument establishes a dual relationship between Ko0,- and 

COROLLARY 2. Let (2.1) and (2.2) be Gaussian quadrature rules with nonnegative 
weight functions. Then K2m 0, K0,2n F2m 0 and G0o2n in Theorem 1 are nonnegative. 
If a = b, then K2 I2 m is nonnegative. 

Proof. By Corollary 1, 
rd 

K2m. 0(x) = K2m.-10(x) L v(y) dy. 

It is known [13, p. 61] that K2.,, 0 is nonnegative. Since v is nonnegative, the previous 
equation implies K2m 0 is nonnegative. 

The definition of F2'o implies 

F2M (x, a) = u(x)(x _ )(2m1 dx, x < a, 
b 

= J u(x)(x - t)(2m-1) dX, x _ a. 
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u(x) > 0 on [a, b] implies -u(x)(x- )(2rn-) _ 0 on [a, x] and u(x)(x -)(2rn-1) > O 
on [x, b]. Thus, F2,, ?is nonnegative. 

The same reasoning shows that K0 2' and G0' 2 are nonnegative. 
Let a = b. By (2.5') and Corollary 1, 

(2.14) K2m,2n(x, y) = Ko,2n.l(y)[F2m ?(x, b) - K2.i,,0(x)] + K2mil.0(x)G (2n(Y ). 

The definition of F 2,O implies 

F2m, (, b) = U(Xg)x (2l) dx. 

Corollary 1 and (2.5') give 
m z 

K2,nx- 1,O(?= ) A,(a, -)( )(x, a,) - ] u(x)(x - ) dx. /A-a 
Thus, 

F2m ?(x, b) - K2.-_ 0(x) = - A,,(a, - X)(2nl) O(x, a,). 

Since A, > O for 1 ? _ m and a < a, < ... < a, < b, the previous equation 
implies that F 2,O - K2mi ,0 is nonnegative. It follows from (2.14) that K2m'2n is 

nonnegative. Q.E.D. 

3. Error Bounds. The equality for R X S(f) given by (2.4') can be the basis 
for infinitely many sharp bounds for the cross-product cubature error. One convenient 
bound [10, pp. 203-205], which uses the L1 norm, is 

(3.1) JR X S(f)l < MP'-(a, #)NP'U(f; a, 3), 

where 

(3.2) MP.'(a, K3) = j j KK"I + I jjKt'ajj1 + jKII 1 
i<p 

NP'a(f; a!) = max {max fp,j(x, 1)I, J <o; 

(3.3) zs 
b 

max If i,7(a, y)J, i < p; max jfp,Or(x, Y)jl) 
c;5V 5d a;5x;b;c:5vsd 

By Theorem 1 and Corollary 1, 

IIKP1 = I V(Y)(Y f(;- ) dy IIKP-1,OII1 
(3.4) 

= |, B,(b, - IJK -P_olIi, j K aJ, 
s'=1 

and 

IK lII = L u(x)(x -ea)" dx| IIKo,,_i Ii (3.5) a 

-|A,,(a,. c)")| |lKo,,-llll, i < p. 
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The Peano kernels K1,- o and Ko,,-, do not depend on a and ,B. We can find the 
values of I IK,-,,o I 1 and I IKo ,, 1 , in [13] for most rules of interest. With these values, 
it is easy to calculate K I K'pj 1, and I IjK 'I 1I from (3.4) and (3.5). 

It would be desirable to tabulate I IKP 
a 
I 1j for various cross-product rules to utilize 

(3.1) effectively. We can obtain a bound on IIKP"ll' as follows: Theorem 1 and 
Corollary 1 imply 

II KP'Ill _ K0,r..-11j| [j|FP'?| 1 + | |Kp_.,0IIjj] + ||Kp_..oIIj IG'?I ll. 

After interchanging the limits of integration, a direct calculation shows 

IIFP"'1l Jb ju(x)(x- a)(P)j dx, 

and 

IIG0'aII1 Iv(y)(y - 3)(o)j dy. 

Thus, 

(3.6) {IIKP'0I1 ? IKo,111H1 [fb Iu(x)(x - a)("R dx + IIK,_,ojII] 

d 

+ jjKp_.1,0jj1 f v(y)(y - )('Y)l dy. 

Relations (3.2), (3.4)-(3.6) imply 

M"' (a, ,B) _ IIKp- 1,oI [f jv(y)(y - Of() I dy + E f v(y)(y - )) dy] 

(3.7) + IIK0o.o-|1jj1 I(x)(x - a)P)I dx + u(x)(x - a)i() dx] 

+ IIKp_j..1,0Ij1 |IKo.,_1II1. 

If the Peano kernels Kp-,,o and Ko,,-1 are nonnegative, then Corollary 1 implies 

(3.8) IIKp_1,oI11 = R[x(p)] 

and 

(3.9) IIK0o,r_ll.11 = s[y 

If KP" is nonnegative, Theorem 1 gives 

IIKPrI I = R X S[(x - cz)p)(y - 

Lemmas 1 and 2, and the previous equation imply 

IIKP'O I, = R[(x - a)(P)] 2 B,(b, - 

- S[(y - i3) )] , A,(a c-)(p) 
P-1 
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provided I ? p < p + 1,1 < q + 1. If p = p + 1 and a = q + 1 then 
b d 

(IK30 f = f u(x)(x - a)",+,, dx fv(y)(y- 3)(Q+1) dy 
(3.10)ac 

nz n 
- A )(a 

- +a ) 
( 

BV(b,- )(Q+ 
s1 Y=} 

If (2.1) and (2.2) are Gaussian rules with nonnegative weight functions, then 
relations (3.4), (3.5), (3.8)(3. 10) and Corollary 2 imply 

d 

M2n2m(b, R 2) = (y)(y - 3)() dy 
i<2nc 

b 

+ Sly 2nf f I u(x)(x - b)(i) dx 
(3.11) ~~~~~~~i<2ma 

fb rd 

+ fb u(x)(x - b)(2m) dX f v(y)(y - )(2n) dy 

m n 
- F A,(a, - b)(2m) E B, (b, - 2n) 

1 w1 

For certain purposes it may be convenient to replace some of the integrals in (3.7) 
and (3.11) by sums. Since (2.1) and (2.2) have precision p and q, respectively, 

b m 

a u(x)(x - a)(') dx = ? A,(a,, - a)('), i < p, 

and 
dn 

v (y),y- 3)(i) dy = E B,(b, - 3)(3), j < u 
c ^~~~~~~=1 

We can also write R[x(2m)] cm and S[y(2n)] = dn in (3.11), where cm and d,, are 
thd constants in the classical error forms for (2.1) and (2.2): 

R(r) =c d2 r( ) (a, b), 

S(s)=d dn nq C (c, d). 

4. Extension to Higher Dimensions. Theorem 1 can be extended to n dimen- 
sions. Without giving all the details, we indicate the counterpart of relation (2.4') in 
three dimensions. 

The quadrature rules (2.1), (2.2) and 
ot 0 

(4.1) 1 w(z)t(z) dz = > Ctt(ct) + T(t) e ~~~t-1 
generate a cross-product rule whose cubature error R X S X T(f) is 

r'frdl.b 
R X S X T(f) = JII u(x)v(y)w(z)f(x, y, z) dx dy dz 

0 fi en 

- > A,XB,Cj(a,, b,, ce). 
t1 pv- 1-1 
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Let 1 ? r + 1, where r is the precision of (4.1), and let y ( [e, f]. Sard's Kernel 
Theorem 74 [10, p. 290] gives the following counterpart of (2.4') for R X S X T(D): 

b 

R X S X T(f) = I fp.,,k(x, 13, Py)KP.i (x) dx 
j<o;k<T a 

d 

+ f i f k(a y, y)K"(, (Y) dy 
i<p;k<lrc 

+ f f b f,,7(a, /, z)K" ' '7T(z) dz 
i<p;i<a e 

d fb 

(4.2) + jf jd .1 f,k(x, y, y)K "''(x, y) dx dy 

Pf {d 

+ E 
K .|f1aT(ax y z)Kv(y 7(y z) dy dz i<p e c 

ft b 

+ 

E f J P. iuf(x, , z)Kp d f(x z) dx dz 
i<ffe 

rf rd rb 

+ K,,(J f (x y z)Kp d f (x y z) dx dy dzd 

We find that all of the kernels in (4.2) are completely determined by the three basic 
5.ernels KPumr, Kcal Ex and Kml . If Kpply (o 1, Kowe mao and Kol t oM denote the Peano 

kernels for the respective quadrature rules (2.1), (2.2) and (4.1), we find that 

rd fs 
KP' ' (x) = Kp=l ,(X) M v(y) dy 3 (z) dz, 

rb rf 
M12(Y0,y) = Ko, an-o(Y) M (x) dx /(z) dz, 

rb rd 

K 0,,r(z) = Ko,o,,-,(z) u(x) dx v v(y) dy. 

Relations analogous to (2.5') define the multivariable kernels in (4.2); explicit forms 
for the kernels in (4.2) can be found in [7]. 

5. Numerical Examples. To apply (3. 1) we must calculate MP ?(abs j). It is inter- 
esting to compare the bound given by (3.7), with the actual value of MP ?(a, 0). 

Let (2.1) and (2.2) be the Gauss-Legendre one-point quadrature rule defined by 
Al = 2, a, =0, a = -l1,b = l. Since p-=q = l, we may takel I_ p, a< 2. By 
direct calculation we find 

M" (0, 0) = 5, M 2.(0, 0) =3, 

M 1,2(0, 0) = 3, and M2.2(0, 0) =13/9. 

Relation (3.7) gives 

M "(0, 0) < 7, M2'1(0, 0) < 11/3, 

M1 .2(0, 0) < 11/3, and M2.2(0, 0) ? 15/9. 
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By (3.11), M2'2(1, 0) = 22/9. The bound obtained from (3.7) is M2'2(1, 0) < 24/9. 
The choice (a, i) = (0, 0) forces some of the kernels in (3.2) to vanish. This observation 
explains why M2'2(0, 0) < M2'2(1, 0). 

Let (2.1) and (2.2) be the Gauss-Legendre two-point quadrature rule defined by 
A1 = A2 = 1, a, = - V3/3, a2 = V3/3, a = -1, b = 1. If we approximate 

fA lIn (x + y + 5)1/2 dx dy, 

we find that the cross-product cubature error is 0.00017. We obtain the following 
error bounds for (3.1) and (3.7): 

p= = 1 0.42 

p= = 2 0.014 

p= = 3 0.0079. 
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